今日实时汇率
1 美元(USD)=
7.178 人民币(CNY)
反向汇率:1 CNY = 0.1393 USD
更新时间:2025-07-09 03:00:01

7 月 29 日,《纽约时报》的记者在谷歌实验室,率先看到了谷歌最新推出的 RT-2 模型驱动的机器人。
一个单臂机器人站在一张桌子前。桌子上坐着三个塑料雕像:狮子、鲸鱼和恐龙。工程师给机器人发出指令:「捡起灭绝的动物。」机器人呼呼地响了一会儿,然后手臂伸出,爪子张开落下。它抓住了恐龙。
这是一道智能的闪光。
《纽约时报》描述道,「直到上周,这一演示还是不可能的。机器人无法可靠地操纵它们以前从未见过的物体,它们当然也无法实现从「灭绝的动物」到「塑料恐龙」的逻辑飞跃。」
虽然仍然存在于展示之中,且谷歌并不打算立即进行更大规模的发布或者对其进行商业化,但这一展示已经足以展现大模型为机器人能够带来的机遇的一角。
在大模型时代到来之前,人们训练机器人,通常针对每个任务进行优化,比如抓取某种玩具,需要足量的数据,机器人才能准确地从各个角度、各个光线下识别这种玩具,抓取成功。而让机器人意识到自己有抓取玩具的任务,也需要对机器人进行编程才能解决。
而大模型的智能和泛化能力,让人们看到了解决这些问题,走向通用机器人的一道曙光。
将 Transformer运用到机器人中
谷歌新的 RT-2 模型,全称为 Robotic Transformer 2,运用 Transformer 架构作为其模型的基座。
2018 年被提出的 Transformer 架构,是目前火遍全球的大语言模型(LLM)的最底层的基座,但事实上,作为一种架构,Transformer 不止可以应用于大语言模型当中,也可以用于训练其他类型的数据。早在今年 3 月份,谷歌就发布了 PaLM-E,是当时世界上最大视觉语言模型(VLM)。
大语言模型中,语言被编码为向量,人们为模型提供大量的语料,使其能够预测出人类通常下一句会说什么,借此生成语言回答。
而在视觉语言模型中,模型可以将图像信息编码为与语言类似的向量,让模型既能「理解」文字,又能用相同方式「理解」图像。而研究员们为视觉语言模型提供大量的语料和图像,使其能够执行视觉问答、为图像添加字幕和物品识别等任务。
无论是图像还是语言,都是相对容易大量获取的数据。因此,模型很容易取得令人惊艳的成果。
而想使用 Transformer 架构来生成机器人行为,却有一个很大的难点。「涉及到机器人动作的数据非常昂贵。」清华大学交叉信息研究院助理教授许华哲教授告诉极客公园,「视觉和语言数据都来自于人类,是被动数据,而机器人的动作数据,全部是来自于机器人的主动数据。
比如我想研究机器人倒咖啡的动作,不管是写代码让机器人执行,还是利用其他的方式让机器人执行,都是需要机器人实际执行一遍这个操作才能得到这个数据。因此,机器人的数据与语言和图片的规模和量级是完全不一样的。」
在谷歌研究的第一代机器人 Transformer 模型 RT-1 中,谷歌第一次开启了这样的挑战,尝试建立一个视觉语言动作模型。
为了建立这样的模型,谷歌使用了 13 个机器人,在一个搭建的厨房环境中耗时 17 个月收集到了机器人在 700 多个任务上的主动数据组建的数据集。
数据集同时记录了三个维度:
视觉——机器人在执行任务操作时的摄像头数据; 语言——用自然语言描述的任务文字; 和机器人动作——机器手进行任务时在 xyz 轴和偏转数据等。
虽然当时得到了较好的实验效果,但可想而知,想要进一步增加数据集内数据的数量,将是一件非常难的事情。