今日实时汇率
持有
美元 USD 人民币 CNY 欧元 EUR 英镑 GBP 澳元 AUD 加元 CAD 日元 JPY 港币 HKD 印度卢比 INR 澳门元 MOP 韩元 KRW 墨西哥比索 MXN 阿联酋迪拉姆 AED 阿富汗尼 AFN 阿尔巴尼列克 ALL 亚美尼亚德拉姆 AMD 荷兰盾 ANG 安哥拉宽扎 AOA 阿根廷比索 ARS 阿鲁巴弗罗林 AWG 阿塞拜疆马纳特 AZN 波黑可兑换马克 BAM 巴巴多斯元 BBD 孟加拉国塔卡 BDT 保加利亚列弗 BGN 巴林第纳尔 BHD 布隆迪法郎 BIF 百慕达元 BMD 文莱元 BND 玻利维亚诺 BOB 巴西雷亚尔 BRL 巴哈马元 BSD 不丹努尔特鲁姆 BTN 博茨瓦纳普拉 BWP 白俄罗斯卢布 BYN 伯利兹元 BZD 刚果法郎 CDF 瑞士法郎 CHF 智利比索 CLP 哥伦比亚比索 COP 哥斯达黎加科朗 CRC 古巴比索 CUP 佛得角埃斯库多 CVE 捷克克朗 CZK 吉布提法郎 DJF 丹麦克朗 DKK 多米尼加比索 DOP 阿尔及利亚第纳尔 DZD 埃及镑 EGP 厄立特里亚纳克法 ERN 埃塞俄比亚比尔 ETB 斐济元 FJD 福克兰镑 FKP FOK募集币 FOK 格鲁吉亚拉里 GEL 格恩西岛磅 GGP 加纳塞地 GHS 直布罗陀镑 GIP 冈比亚达拉西 GMD 几内亚法郎 GNF 危地马拉格查尔 GTQ 圭亚那元 GYD 洪都拉斯伦皮拉 HNL 克罗地亚库纳 HRK 海地古德 HTG 匈牙利福林 HUF 印度尼西亚卢比 IDR 以色列新谢克尔 ILS 马恩磅 IMP 伊拉克第纳尔 IQD 伊朗里亚尔 IRR 冰岛克郎 ISK 新泽西岛磅 JEP 牙买加元 JMD 约旦第纳尔 JOD 肯尼亚先令 KES 吉尔吉斯斯坦索姆 KGS 柬埔寨瑞尔 KHR 基里巴斯 KID 科摩罗法郎 KMF 科威特第纳尔 KWD 开曼群岛元 KYD 哈萨克斯坦坚戈 KZT 老挝基普 LAK 黎巴嫩镑 LBP 斯里兰卡卢比 LKR 利比里亚元 LRD 莱索托洛蒂 LSL 利比亚第纳尔 LYD 摩洛哥迪拉姆 MAD 摩尔多瓦列伊 MDL 马达加斯加阿里亚里 MGA 马其顿代纳尔 MKD 缅甸元 MMK 蒙古货币 MNT 毛塔币 MRU 毛里求斯卢比 MUR 马尔代夫拉菲亚 MVR 马拉维克瓦查 MWK 林吉特 MYR 莫桑比克新梅蒂卡尔 MZN 纳米比亚元 NAD 尼日利亚奈拉 NGN 尼加拉瓜新科多巴 NIO 挪威克朗 NOK 尼泊尔卢比 NPR 新西兰元 NZD 阿曼里亚尔 OMR 巴拿马巴波亚 PAB 秘鲁新索尔 PEN 巴布亚新几内亚基那 PGK 菲律宾比索 PHP 巴基斯坦卢比 PKR 波兰兹罗提 PLN 巴拉圭瓜拉尼 PYG 卡塔尔里亚尔 QAR 罗马尼亚列伊 RON 塞尔维亚第纳尔 RSD 俄罗斯卢布 RUB 卢旺达法郎 RWF 沙特里亚尔 SAR 所罗门群岛元 SBD 塞舌尔卢比 SCR 苏丹镑 SDG 瑞典克朗 SEK 新加坡元 SGD 圣赫勒拿镑 SHP 英镑SLE SLE 塞拉利昂利昂 SLL 索马里先令 SOS 苏里南元 SRD 南苏丹币 SSP 圣多美多布拉 STN 叙利亚镑 SYP 斯威士兰里兰吉尼 SZL 泰铢 THB 塔吉克斯坦索莫尼 TJS 土库曼斯坦马纳特 TMT 突尼斯第纳尔 TND 汤加潘加 TOP 土耳其里拉 TRY 特立尼达多巴哥元 TTD 图瓦卢元 TVD 新台币 TWD 坦桑尼亚先令 TZS 乌克兰格里夫纳 UAH 乌干达先令 UGX 乌拉圭比索 UYU 乌兹别克斯坦苏姆 UZS 委内瑞拉玻利瓦尔 VES 越南盾 VND 瓦努阿图瓦图 VUV 萨摩亚塔拉 WST 中非法郎 XAF 东加勒比元 XCD 特别提款权 XDR 西非法郎 XOF 太平洋法郎 XPF 也门里亚尔 YER 南非兰特 ZAR 赞比亚克瓦查 ZMW 津巴布韦币 ZWL
交换
兑换
美元 USD 人民币 CNY 欧元 EUR 英镑 GBP 澳元 AUD 加元 CAD 日元 JPY 港币 HKD 印度卢比 INR 澳门元 MOP 韩元 KRW 墨西哥比索 MXN 阿联酋迪拉姆 AED 阿富汗尼 AFN 阿尔巴尼列克 ALL 亚美尼亚德拉姆 AMD 荷兰盾 ANG 安哥拉宽扎 AOA 阿根廷比索 ARS 阿鲁巴弗罗林 AWG 阿塞拜疆马纳特 AZN 波黑可兑换马克 BAM 巴巴多斯元 BBD 孟加拉国塔卡 BDT 保加利亚列弗 BGN 巴林第纳尔 BHD 布隆迪法郎 BIF 百慕达元 BMD 文莱元 BND 玻利维亚诺 BOB 巴西雷亚尔 BRL 巴哈马元 BSD 不丹努尔特鲁姆 BTN 博茨瓦纳普拉 BWP 白俄罗斯卢布 BYN 伯利兹元 BZD 刚果法郎 CDF 瑞士法郎 CHF 智利比索 CLP 哥伦比亚比索 COP 哥斯达黎加科朗 CRC 古巴比索 CUP 佛得角埃斯库多 CVE 捷克克朗 CZK 吉布提法郎 DJF 丹麦克朗 DKK 多米尼加比索 DOP 阿尔及利亚第纳尔 DZD 埃及镑 EGP 厄立特里亚纳克法 ERN 埃塞俄比亚比尔 ETB 斐济元 FJD 福克兰镑 FKP FOK募集币 FOK 格鲁吉亚拉里 GEL 格恩西岛磅 GGP 加纳塞地 GHS 直布罗陀镑 GIP 冈比亚达拉西 GMD 几内亚法郎 GNF 危地马拉格查尔 GTQ 圭亚那元 GYD 洪都拉斯伦皮拉 HNL 克罗地亚库纳 HRK 海地古德 HTG 匈牙利福林 HUF 印度尼西亚卢比 IDR 以色列新谢克尔 ILS 马恩磅 IMP 伊拉克第纳尔 IQD 伊朗里亚尔 IRR 冰岛克郎 ISK 新泽西岛磅 JEP 牙买加元 JMD 约旦第纳尔 JOD 肯尼亚先令 KES 吉尔吉斯斯坦索姆 KGS 柬埔寨瑞尔 KHR 基里巴斯 KID 科摩罗法郎 KMF 科威特第纳尔 KWD 开曼群岛元 KYD 哈萨克斯坦坚戈 KZT 老挝基普 LAK 黎巴嫩镑 LBP 斯里兰卡卢比 LKR 利比里亚元 LRD 莱索托洛蒂 LSL 利比亚第纳尔 LYD 摩洛哥迪拉姆 MAD 摩尔多瓦列伊 MDL 马达加斯加阿里亚里 MGA 马其顿代纳尔 MKD 缅甸元 MMK 蒙古货币 MNT 毛塔币 MRU 毛里求斯卢比 MUR 马尔代夫拉菲亚 MVR 马拉维克瓦查 MWK 林吉特 MYR 莫桑比克新梅蒂卡尔 MZN 纳米比亚元 NAD 尼日利亚奈拉 NGN 尼加拉瓜新科多巴 NIO 挪威克朗 NOK 尼泊尔卢比 NPR 新西兰元 NZD 阿曼里亚尔 OMR 巴拿马巴波亚 PAB 秘鲁新索尔 PEN 巴布亚新几内亚基那 PGK 菲律宾比索 PHP 巴基斯坦卢比 PKR 波兰兹罗提 PLN 巴拉圭瓜拉尼 PYG 卡塔尔里亚尔 QAR 罗马尼亚列伊 RON 塞尔维亚第纳尔 RSD 俄罗斯卢布 RUB 卢旺达法郎 RWF 沙特里亚尔 SAR 所罗门群岛元 SBD 塞舌尔卢比 SCR 苏丹镑 SDG 瑞典克朗 SEK 新加坡元 SGD 圣赫勒拿镑 SHP 英镑SLE SLE 塞拉利昂利昂 SLL 索马里先令 SOS 苏里南元 SRD 南苏丹币 SSP 圣多美多布拉 STN 叙利亚镑 SYP 斯威士兰里兰吉尼 SZL 泰铢 THB 塔吉克斯坦索莫尼 TJS 土库曼斯坦马纳特 TMT 突尼斯第纳尔 TND 汤加潘加 TOP 土耳其里拉 TRY 特立尼达多巴哥元 TTD 图瓦卢元 TVD 新台币 TWD 坦桑尼亚先令 TZS 乌克兰格里夫纳 UAH 乌干达先令 UGX 乌拉圭比索 UYU 乌兹别克斯坦苏姆 UZS 委内瑞拉玻利瓦尔 VES 越南盾 VND 瓦努阿图瓦图 VUV 萨摩亚塔拉 WST 中非法郎 XAF 东加勒比元 XCD 特别提款权 XDR 西非法郎 XOF 太平洋法郎 XPF 也门里亚尔 YER 南非兰特 ZAR 赞比亚克瓦查 ZMW 津巴布韦币 ZWL
1 美元(USD)=
7.178 人民币(CNY)
反向汇率:1 CNY = 0.1393 USD
更新时间:2025-07-11 03:00:01
立即换算
摘要:本篇文章将以望月 新一和彼得 舒尔茨 为中心,探讨两位科学家在人工智能领域的贡献和研究成果,重点介绍他们在机器学习和语音识别方面的工作。
一、望月新一 望月新一,日本人工智能专家,现为东京大学终身教授。他是人工智能领域的权威之一,曾发表大量顶尖论文,在图像识别和自然语言处理等方面做出了重要贡献。其中,他在机器学习领域做出突出成就,被视为机器学习领域的奠基人之一。
1. 机器学习方面的贡献
望月新一在机器学习领域做出了众多创新性研究。他提出了“支持向量机”(Support Vector Machines,SVM)的算法,并将其应用于分类、回归和异常检测等问题。同时,他还提出了“核函数”(Kernel functions)的概念,在不同维度上进行分类,使得支持向量机算法具有更强的适应性和学习能力。
2. 语音识别方面的贡献
除了机器学习,望月新一在语音识别领域也有着卓越的贡献。他提出的“最大信息熵准则”(Maximum Entropy Criterion,MEC)算法,在语音识别中被广泛应用,使得语音识别的准确率得到了极大提高。此外,他还研究了语音识别系统中的关键技术,如音素建模、语言模型以及声学模型等。
二、彼得舒尔茨 彼得舒尔茨,德国计算机科学家。他是语音识别和发音缺陷诊断领域的专家,对自然语言处理和音频信号处理方面的问题有深入的理解。他在语音识别方面的研究,为后来的人工智能技术提供了作为基础的计算机语音处理技术。
1. 语音识别方面的贡献
彼得舒尔茨在语音识别方面有着重要的贡献。他提出了自适应滤波算法,实现了语音识别中的抗噪声技术,使得语音识别技术可以在嘈杂环境中得到更好的应用。此外,他还提出了一种基于感知线性预测(Perceptual Linear Prediction,PLP)的语音特征提取方法,用于改善语音识别系统中特征的准确性。
2. 发音缺陷诊断方面的贡献
除了语音识别,彼得舒尔茨还在发音缺陷诊断方面做出了突出贡献。他提出了基于机器学习的发音缺陷自动诊断系统,该系统能够自动识别儿童在发音中存在的缺陷,为语言教育提供了帮助。
三、两位科学家的合作 望月新一和彼得舒尔茨在人工智能领域有着广泛的合作。他们合作研究了语音识别中的关键技术,如声学模型、语言模型以及模型求解等,共同推动了语音识别的发展。
四、未来展望 人工智能技术的发展需要不断的探索和创新,望月新一和彼得舒尔茨的成就是推动人工智能发展的巨大力量。未来,人工智能技术将在更广阔的领域中发挥作用,科学家们需要不断地实践和创新,将其应用于更多的实际问题中。
五、总结 本文从四个方面阐述了望月新一和彼得舒尔茨在人工智能领域的贡献和研究成果,包括他们在机器学习和语音识别方面的突出成就,以及两位科学家在人工智能领域的合作。他们的成就为人工智能技术的快速发展和应用提供了坚实的基础。